Mathematical Models and Monte Carlo Algorithms for Physically Based
Rendering
PhD dissertation, Eric Lafortune, February 1996
[Dissertation]
[Abstract]
[Overview]
[Contents]
[Images]
Table of contents
- Chapter 1: Introduction ..... 3
- 1.1 Rendering ..... 3
- 1.2 The Input ..... 4
- 1.3 The Output ..... 6
- 1.4 Physically-Based Rendering Algorithms ..... 6
- 1.4.1 Object-Based and Image-Based Algorithms ..... 7
- 1.4.2 Deterministic and Monte Carlo Algorithms ..... 7
- 1.5 Objectives of this Thesis ..... 8
- 1.6 Overview ..... 9
- Chapter 2: The Global Illumination Problem ..... 11
- 2.1 Concepts ..... 12
- 2.1.1 Radiance ..... 12
- 2.1.2 Radiant Flux ..... 14
- 2.1.3 The Bidirectional Reflectance Distribution Function ..... 16
- 2.2 The Rendering Equation ..... 18
- 2.3 The Potential Equation ..... 20
- 2.4 The Global Reflectance Distribution Function ..... 23
- 2.4.1 Definition ..... 23
- 2.4.2 Flux in Terms of the GRDF ..... 24
- 2.4.3 Equations Defining the GRDF ..... 24
- 2.5 Summary ..... 27
- Chapter 3: Monte Carlo Methods ..... 29
- 3.1 Introduction ..... 29
- 3.2 Monte Carlo Integration ..... 31
- 3.3 Stratified Sampling ..... 34
- 3.4 Importance Sampling ..... 38
- 3.5 Combining Estimators ..... 42
- 3.6 Control Variates ..... 54
- 3.7 Monte Carlo Methods to Solve Integral Equations ..... 56
- 3.8 Russian roulette ..... 57
- 3.9 Next Event Estimation ..... 61
- 3.10 Summary ..... 62
- Chapter 4: Monte Carlo Methods Applied to the Global Illumination Problem ..... 65
- 4.1 Monte Carlo Methods Applied to the Rendering Equation -- Path Tracing ..... 68
- 4.1.1 Basic Algorithm ..... 68
- 4.1.2 Stratified Sampling ..... 72
- 4.1.3 Importance Sampling ..... 73
- 4.1.4 Next Event Estimation ..... 74
- 4.1.5 Combining Estimators ..... 79
- 4.1.6 Control Variates ..... 80
- 4.1.7 Improved Importance Sampling and Control Variates ..... 81
- 4.2 Monte Carlo Methods Applied to the Potential Equation -- Light Tracing ..... 84
- 4.2.1 Basic Algorithm ..... 84
- 4.2.2 Importance Sampling ..... 87
- 4.2.3 Next Event Estimation ..... 87
- 4.3 Monte Carlo Methods Applied to the Integral Equations of the GRDF -- Bidirectional Path Tracing ..... 91
- 4.3.1 Basic Algorithm ..... 91
- 4.3.2 Next Event Estimation ..... 92
- 4.3.3 Importance Sampling ..... 100
- 4.3.4 Combining Estimators ..... 101
- 4.4 Summary ..... 102
- Chapter 5: Test Results ..... 103
- 5.1 Implementation ..... 103
- 5.2 Test Scenes ..... 105
- 5.3 Stratified Sampling ..... 107
- 5.4 Importance Sampling ..... 109
- 5.5 Next Event Estimation ..... 110
- 5.6 Combining Estimators ..... 113
- 5.7 Control Variates ..... 114
- 5.8 Bidirectional Path Tracing ..... 116
- 5.9 Summary ..... 118
- Chapter 6: Summary and Conclusions ..... 119
- 6.1 Summary ..... 119
- 6.2 Conclusions ..... 121
- 6.3 Future Work ..... 124
- Appendix A: Camera Models ..... 127
- List of Figures ..... 133
- Bibliography ..... 135
Copyright © 1996-2016 Eric Lafortune.